Chemistry Notes and Equations - 8/9/2013 www.askmath.weebly.com

Sig-Fig Rules : Decimal \implies Start on the right; No decimal \implies Start on the left.

Specific Heat capacity : $q = m \cdot c \cdot \Delta T \implies (g)(\frac{J}{g^{\circ}C})(^{\circ}C)$

c of water = 4.184 $\frac{J}{g^\circ C}$

1 calorie = 4.184J

 $c = \lambda \cdot v$, where v is the frequency of light.

$$c = 3.00 \times 10^8 \frac{m}{s}$$

 $E = h \cdot v$, where h is Planck's constant : $6.626 \times 10^{-34} Js$ and v is frequency.

Visible light wavelength in nanometers:

Red 650 - 710 Green 490 - 549 Violet 390 - 429

Acid suffixes and Prefixes \implies Anion name

Hydro—ic \implies —ide Hypo—ous \implies Hypo—ite —ous \implies —ite —ic \implies —ate Per—ic \implies Per—ate

Empirical Formula

- 1. Divide the percent by the atomic mass to get moles
- 2. Divide all the moles by the smalls mole
- 3. Multiply to get whole #

 $q = m \cdot c \cdot \Delta T + (H_f)(mol) + m \cdot c \cdot \Delta T + (H_v)(mol) + m \cdot c \cdot \Delta T$

1 atm pressure = 760 mm Hg and torr = 101.3 kPa

Boyle : $P_1V_1 = P_2V_2$ Charles : $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ Gay-Lussac : $\frac{P_1}{T_1} = \frac{P_2}{T_2}$ Ideal Gas Law :

$$\begin{array}{c} \hline P \cdot V = n \cdot R \cdot T \\ \text{kPa} \implies 8.31 \, \frac{kPa \cdot L}{mol \cdot k} \\ \text{atm} \implies .0821 \, \frac{atm \cdot L}{mol \cdot k} \\ \text{mmHg} \implies 62.4 \, \frac{mmHg \cdot L}{mol \cdot k} \end{array}$$

Graham's Law : Rate of effusion $\propto \frac{1}{\sqrt{m}}$

$$\frac{R_a}{R_b} = \sqrt{\frac{MM_b}{MM_a}}$$
Molarity : $\frac{\text{moles of solute}}{\text{L of solvent}}$
Molality : $\frac{\text{moles of solute}}{\text{kg of solvent}}$

$$M_1 V_1 = M_2 V_2$$

$$\Delta T_{BP} = k_{BP} \cdot m \cdot i \implies (\text{BP constant})(\text{molality})(\text{van Hoff Factor})$$
BP constant : $.512 \frac{\circ C}{m}$
MP constant : $1.86 \frac{\circ C}{m}$

$$q_{H_2O} = m \cdot c \cdot \Delta T$$

$$q_c = C \cdot \Delta T$$

$$q_{\text{reaction}} = q_{H_2O} + q_c$$

Heat of Formation and others

Enthalpy : $\Delta H = \sum \text{Products} - \sum \text{Reactions} \implies H_f \text{ in kJ}$ Entropy : $\Delta S = \sum \text{Products} - \sum \text{Reactions} \implies > 0 = \text{endothermic}$ Gibbs Free energy : $\Delta G = \Delta H - T \cdot \Delta S$

 ΔG :

 $< 0 \implies$ spontaneous $> 0 \implies$ non spontaneous $= 0 \implies$ reaction is at equilibrium

For $aA + bB \rightleftharpoons cC + dD$:

$$k_{eq} = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

 $pH = -\log [H^+]$ $pOH = -\log [OH^-]$ $H^+ + OH^- = H_2O$ $k_w = 1 \times 10^{-14} = [H^+] \cdot [OH^-]$

logs : sig-fig in M becomes decimals on the answer

Ex. $-log(1.5 \times 10^{-12}) = 11.82$